
ECE444: Software Engineering

Inspections, Code Reviews

Shurui Zhou

Learning Goals

• Understand different forms of peer reviews with different formality levels.
• Engage in constructive modern code review using a typical commit review system.
• Describe the benefits and properties of good checklists in code review.

Formal Inspections

Formal Inspections

• Idea popularized in 70s at IBM
• Group of developers meets to formally review code or other artifacts
• Most effective approach to find bugs
• Typically 60-90% of bugs found with inspections

• Expensive and labor-intensive

Inspection Team and Roles

• Typically 4-5 people (min 3)
• Author
• Inspector(s)
• Find faults and broader issues

• Reader
• Presents the code or document at inspection meeting

• Scribe
• Records results

• Moderator
• Manages process, facilitates, reports

Planning

Overview

Preparation

Meeting

Rework

Followup

Moderator

Author

Inspectors
(one scribe,
one reader,
one verifier)

Checklists

• Reminder what to look for
• Include issues detected in the past
• Preferably focus on few important items
• Examples:

• Are all variables initialized before use?
• Are all variables used?
• Is the condition of each if/while statement correct?
• Does each loop terminate?
• Do function parameters have the right types and appear in the right order?
• Are linked lists efficiently traversed?
• Is dynamically allocated memory released?
• Can unexpected inputs cause corruption?
• Have all possible error conditions been handled?
• Are strings correctly sanitized?

8

Process details

• Authors do not explain or defend the code – not objective
• Author != moderator, != scribe, !=reader
• Author should still join the meeting to observe questions and

misunderstandings and clarify issues if necessary

• Reader (optional) walks through the code line by line, explaining it
• Reading the code aloud requires deeper understanding
• Verbalizes interpretations, thus observing differences in interpretation

9

Modern Code Review

11
https://help.github.com/articles/using-pull-requests/

Linus's law: “Many eyes make all bugs shallow”
----Standard Refrain in Open Source

“Have peers, rather than
customers, find defects”

--- Karl Wiegers

12

Isn’t testing sufficient?

• Only completed implementations can be tested (esp. scalability,
performance)
• Design documents cannot be tested
• Tests don’t check code quality
• Many quality attributes (eg., security, compliance, scalability) are

difficult to test

A second pair of eyes

• Different background, different experience
• No preconceived idea of correctness
• Not biased by “what was intended”

14

https://github.com/phacility/phabricator

https://www.niallkennedy.com/blog/2006/11/google-
mondrian.html
https://www.youtube.com/watch?v=sMql3Di4Kgc

https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/day-life-alm-
developer-suspend-work-fix-bug-conduct-code-review?view=azure-
devops#request-a-code-review

https://www.niallkennedy.com/blog/2006/11/google-mondrian.html
https://www.youtube.com/watch?v=sMql3Di4Kgc

Gerrit Code Review

“As I've learned over the last
two years at Google, where I
developed a similar tool named
Mondrian, proper code review
habits can really improve the
quality of a code base, and good
tools for code review will
improve developers' life.”

https://github.com/rietveld-codereview/rietveld

Gerrit Code Review

https://bcouetil.gitlab.io/acad
emy/BP-gerrit.html

http://www.mediawiki.org/
wiki/Gerrit/Advanced_usage

Process: Checklists!

The Checklist:
https://www.newyorker.com/magazine/2007/12/10/the-checklist

Develop checklist for Code Review

Expectations and Outcomes
of Modern Code Reviews

Reasons for Code Reviews
• Finding defects

• both low-level and high-level issues
• requirements/design/code issues
• security/performance/… issues

• Code improvement
• readability, formatting, commenting, consistency, dead code removal, naming
• enforce to coding standards

• Identifying alternative solutions
• Knowledge transfer

• learn about API usage, available libraries, best practices, team conventions, system
design, "tricks", …

• "developer education", especially for junior developers

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Reasons for Code Reviews (continued)

• Team awareness and transparency
• let others "double check" changes
• announce changes to specific developers or entire team ("FYI")
• general awareness of ongoing changes and new functionality

• Shared code ownership
• shared understanding of larger part of the code base
• openness toward critique and changes
• makes developers "less protective" of their code

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Code Review at Microsoft

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Outcomes
(at Microsoft analyzing 200 reviews with 570 comments)

• Most frequently code improvements (29%)
• 58 better coding practices
• 55 removing unused/dead code
• 52 improving readability

• Defect finding (14%)
• 65 logical issues (“uncomplicated logical errors, eg., corner cases, common

configuration values, operator precedence)
• 6 high-level issues
• 5 security issues
• 3 wrong exception handling

• Knowledge transfer
• 12 pointers to internal/external documentation etc

Outcomes (Analyzing Reviews)

Mismatch of Expectations and Outcomes

• Low quality of code reviews
• Reviewers look for easy errors, as formatting issues
• Miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change
• Understanding the code and its context
• Feedback channels to ask questions often needed

• No quality assurance on the outcome

29

Code Review at Google

• Introduced to “force developers to write code that other developers
could understand”
• 3 Found benefits:
• checking the consistency of style and design
• ensuring adequate tests
• improving security by making sure no single developer can commit arbitrary

code without oversight

30

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko and Alberto Bacchelli. 2018. Modern Code
Review: A Case Study at Google. International Conference on Software Engineering

Google's Code Review Policy

• All change lists must be reviewed. Period.
• Any CL can be reviewed by any engineer at Google.
• Each directory has a list of owners. At least one reviewer or the author must be an owner for each

file that was touched in the commit. If the author is not in the owners file, the reviewer is
expected to pay extra attention to how the code fits in to the overall codebase.

• [… readability review …] If the author does not have readability review, the reviewer is expected
to pay extra attention to coding style (both the syntax and the proper use of libraries in that
language).

• One can enforce that any CLs to that directory are CC'd to a team mailing list.
• Reviews are conducted either by email, or using a web interface called Mondrian
• In general, the review must have a positive outcome before the change can be submitted

(enforced by perforce hooks). However, if the author of the changelist meets the readability and
owners checks, they can submit the change TBR, and have a post-hoc review. There is a process
which will harass reviewers with very annoying emails if they do not promptly review the change.

32

source: https://www.quora.com/What-is-Googles-internal-code-review-policy-process, 2010

https://www.quora.com/What-is-Googles-internal-code-review-policy-process

Reviewing Relationships

How to write code review comments

• Be kind.

• Explain your reasoning.

• Balance giving explicit directions with just pointing out problems and letting the developer
decide.

• Encourage developers to simplify code or add code comments instead of just explaining the
complexity to you.

https://google.github.io/eng-practices/review/reviewer/comments.html

Bad: “Why did you use threads here when there’s obviously no benefit to be gained from
concurrency?”
Good: “The concurrency model here is adding complexity to the system without any actual
performance benefit that I can see. Because there’s no performance benefit, it’s best for this code to
be single-threaded instead of using multiple threads.”

Summary

• Code reviews effective to identify bugs
• Additional benefits (e.g., knowledge transfer, shared code ownership,

awareness)
• Reviews require understanding
• Different review types with different formality
• Formal inspection require planning & social skills, are expensive, but

very effective

39

Further Reading

• Sommerville. Software Engineering. 8th Edition. Addison-Wesley 2007.
Chapter 22.2
• Overview of formal inspections

• Wiegers. Peer Reviews in Software. Addison-Wesley 2002
• Entire book on formal inspections; how to run them and how to introduce them

• Bacchelli and Bird. "Expectations, outcomes, and challenges of modern
code review.“ Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013.
• Detailed studies of modern code reviews at Microsoft

• Oram and Wilson (ed.). Making Software. O’Reilly 2010. Chapter 18
• Overview of empirical research on formal inspections

40

https://google.github.io/styleguide/

Further Reading 2

• https://github.com/joho/
awesome-code-review

